Laboratory 1

(Due date: **011**: September 20th, **005**: September 21st, **007**: September 22nd)

OBJECTIVES

- ✓ Introduce VHDL Coding for FPGAs.
- ✓ Learn to write testbenches in VHDL.
- ✓ Learn the Xilinx FPGA Design Flow with the Vivado HL: Synthesis, Simulation, and Bitstream Generation.
- ✓ Learn how to assign FPGA I/O pins and download the bitstream on the Nexys[™] A7-50T Board (or A7-100T).

VHDL CODING

✓ Refer to the <u>Tutorial</u>: <u>VHDL for FPGAs</u> for a list of examples.

NEXYSTM A7-50T FPGA TRAINER BOARD SETUP

- The Nexys A7-50T Board can receive power from the Digilent USB-JTAG Port (J6). Connect your Board to a computer via the USB cable. If it does not turn on, connect the power supply of the Board.
- Nexys A7-50T documentation: Available in <u>class website</u>.

FIRST ACTIVITY (100/100)

DESIGN PROBLEM

- A doctoral student is defending his Dissertation. A 4-member committee is in charge of evaluating the work. The members vote to accept or reject the work. A simple majority vote is required. In case of a tie, the chair of the committee makes the final determination.
- We assign a, b, c, d to the vote of each committee member (a represents the vote of the chair of the committee), where '1' means accept, and '0' reject.
- Design a circuit that generates f=1 when the committee accepts the work, and f=0 if the work is rejected.

The Boolean variables a, b, c, d are represented by 4 switches ('0': switch is OFF, '1': switch is ON). The Boolean variable f is represented by an LED ('1': LED is ON, '0': LED is OFF).

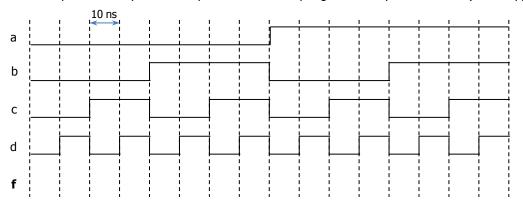
 Complete the truth table for this circuit 	: (5	pts)
---	------	-----	---

 \checkmark Derive (simplify if possible) the Boolean expression: (10 pts)

f =

a	b	С	d	f
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	
				_

PROCEDURE


- Vivado Design Flow for FPGAs: complete the following steps (follow the order strictly): (85 pts)
 - ✓ Create a new Vivado Project. Select the corresponding Artix-7 FPGA device as per the table:

Kit	Artix-7 FPGA Device	Master XDC File	Comments
Nexys A7-50T	XC7A50T-1CSG324I	Nexys-A7-50T-Master.xdc	Recommended board.
Nexys A7-100T	XC7A100T-1CSG324C	Nexys-A7-100T-Master.xdc	
Basys 3	XC7A35T-1CPG236C	Basys-3-Master.xdc	Suggested if you only take ECE2700

✓ Write the VHDL code that implements the simplified Boolean expression. Synthesize your circuit (Run Synthesis).

✓ Write the VHDL testbench to test every possible combination of the inputs.

The figure below provides a suggestion of what the input waveform described by your testbench should look like. Complete the output f so that you can compare it with the output generated by the simulator (next step).

✓ Perform <u>Functional Simulation</u> (Run Simulation → Run Behavioral Simulation). Verify that the output f generated by the simulator matches the one you manually completed. **Demonstrate this to your TA.**

✓ I/O Assignment: Generate the XDC file. Download the corresponding constraints file (XDC) of your board and edit it.

□ Use SW3, SW2, SW1, SW0 as inputs a, b, c, d respectively. Use LED0 as the output f.

Board pin names	SW3	SW2	SW1	SW0	LED0	
Signal names in code	а	b	С	d	f	

The board pin names (SW3-SW0, LED0) are used by all the listed boards (Nexys A7-50T/A7-100T, Basys 3, Nexys 4/DDR). The I/Os listed here are all active high.

✓ Implement your design (Run Implementation).

✓ Do <u>Timing Simulation</u> (Run Simulation → Run Post-Implementation Timing Simulation). **Demonstrate this to your TA.**

✓ Generate the bitstream file (Generate Bitstream).

✓ Download the bitstream on the FPGA (Open Hardware Manager) and test. **Demonstrate this to your TA.**

• Submit (as a .pdf) this lab sheet completed and signed off by the TA (or instructor)

 Submit (<u>as a .zip file</u>) the generated files: VHDL code, VHDL testbench, and XDC file to Moodle (an assignment will be created). DO NOT submit the whole Vivado Project.

✓ Your .zip file should only include one folder. Do not include subdirectories.

The ise strongly recommended that all your design files testbench

 It is strongly recommended that all your design files, testbench, and constraints file be located in a single directory. This will allow for a smooth experience with Vivado.

 \checkmark You should only submit your source files AFTER you have demoed your work. Submission of work files without demo will get NO CREDIT.

lab1	
top.vhd	Design file
top_tb.vhd	Testbench file
lab1.xdc	Constraints fil

TA signature:	Date:
IA Signature.	Date.